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Abstract 

Recent results (post-1990) on the synthesis and structures of bis(trimethylsilylhnethyls M(CHR2) m (R = SiMe 3) of metals and 
metalloids M are described, including those of the crystalline lipophilic [Na(~-CHR2)]~, [Rb(/I-CHRe)(PMDETA)]2, 
K4(CHR2)4(PMDETA)2, [Mg(CHR2X/I-CHR2)]~, P(CHR2) 2 (gaseous) and P2(CHR2)4, [Yb(CHR2)2(OEt2) 2 ] and [{Yb(CR3X/z- 
OEt)(OEt2)}2]; earlier information on other M(CHR2) m complexes and some of their adducts is tabulated. Treatment of M(CHR 2) 
(M = Li or K) with four different nitriles gave the X-ray-characterized azaallyls or /3-diketinimates [Li~')]2,  [ L i ~ ' ) ]  2 and 
[K~"XNCAr)] 2 (LL' = N(R)C(tBu)CHR, L'L' = N(R)C(Ph)C(H)C(Ph)NR, LI2'= N(R)C(Ph)NC(H)C(Ph)CHR, R = SiMe 3 and Ar = 
C6H3Me2-2,5). The two lithium reagents were convenient sources of other metal azaallyls or /3-diketinimates, including those of K, 
Co(II), Zr(IV), Sn(IV), Yb(II), Hf(IV) and U(VI)/U(III). Complexes having one or more of the bulky ligands [LL']-, [UU]-, [LL]-, 
[LU']-, [I~'L"]-, [LL']-  and [{N(R)C(tBu)CH}2C6H4-2] 2- are described and characterized (LL = N(H)C(Ph)C(H)C(Ph)NH, E'L'= 
N(R)C(tBu)C(H)C(Ph)NR, LL" = N(R)C(tBu)CHPh). Among the features of interest are (i) the contrasting tetrahedral or square-planar 
geometry for [C'~PL')2] and [C~L--L)2], respectively, and (ii) olefin-polymerization catalytic activity of some of the zirconium(IV) 
chlorides. 

Keywords: Silicon; Alkali metals; Lanthanides; Bis(trimethylsilyl)methyls; Crystal structures; Azaallyls; /3-Diketinimates 

I. Introduction 

We have a long-st_anding interest in the bis(trimethyl- 
silyl)methyl ligand CHR2(R = SiMe 3) [1], dating back 
to a patent 1969 [2] and our first paper in 1970 [3] 
relating to the then essentially new class of  ligands of 
formula c n 3 - n R n  (n -- 1, 2 or 3). The features which 
we then considered to be significant were that (1) they 
constituted an interesting series of progressively increas- 
ing bulky ligands: n = 3 > n = 2 > n = 1; (ii) they were 
likely to confer lipophilicity on their metal or metalloid 
complexes; and (iii) they are free from /3-hydrogen and 
hence the fl-elimination pathway for their metal or 
metalloid complexes would be unavailable, giving rise 
to the possibility of preparing unusual kinetically stable 
metal complexes. (iv) Feature (iii) was further enhanced 
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by the ligands being free from /3-carbon, so that even a 
/3-methyl elimination pathway would be energetically 
unfavourable; and (v) the NMR spectra of metal com- 
plexes were likely to be simple; for example, a diamag- 
netic metal complex M(CHR~) m was likely to show 

1 "I3 only two characteristic H or C signals and a single 
29Si resonance. 

A good deal of our work concerning the CHR 2 
ligand has concentrated on the preparation, structure 
and reactivity of thermally stable homoleptic com- 
plexes, i.e. compounds of empirical formula M(CHR2) m 
or their neutral ligand adducts. The terms "homolept ic"  
and "heterolept ic"  were coined by us in 1974 to de- 
scribe metal or metalloid complexes of empirical for- 
mula MX m or MXm_xY x, respectively [4]; the het- 
eroleptic complexes include those in which there are 
more than two different ligands. The term " isolept ic"  
was used to designate two or more complexes having 
the same nature and number of ligands. For example, 
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Table 1 
Crystalline bomoleptic main group metal bis(trimethylsilyl)methyls M(CHR2) n and in some cases their neutral ligand adducts (R = SiMe 3) 

Complex State of Metal Comments ReL 
aggregation coordination 

number 

LiCHR z oc 2 Dimer in gas at ~ 100°C/0.1 Torr (/.~-CIqR 2) [5] 
NaCHR 2 ~ 2 Volatile at ~ 100°C/0.1 Torr; (/x-CHR2) [6] 
K4(CHR2)4(PMDETA)2 a 1 2 × 3C, [7] 

2 × 4 (2C, 2N) 
Mg(CHR 2)2 ~ 3 Neutron diffraction; [{Mg(CHR 2 X / x - C H R  2)] ~; [8] 

volatile at ~ 100°C/0.1 Torr 
Ca(CHR2)z(DIOX)2 b 1 2 × C, [9] 

2 × 0  
B(CHR2)2CI 1 3 B(CHR2) 3 too bulky to be prepared, [10] 

AI(CHR2) 2 2 3 
AI(CHR 2 )3 i 3 
Ga(CHR 2 ) 2 2 3 
Ga(CHR2) 3 1 3 
In(CHR2) 2 2 3 
In(CHR2)3 1 3 
Si(CHR2) 2 
Si(CHRz) 3 1 3 
Ge(CHR 2)2 2 3 

Ge(CHR 2 )3 1 3 
Sn(CHR2) 2 2 3 

Sn(CHR2) 3 1 3 
Sn(CHR 2)3 CI 1 4 
Pb(CHR2)2 1(?) 2 
P(CHR2) 2 2 3 

but B(CHR2)zMe accessible [11] 
AI-A1 bond [12] 
Structure not determined [13] 
Ga-Ga bond [14] 
Structure not determined [13] 
In-In bond [15] 
D3h Skeletal structure [13] 
Transient, postulated as intermediate [16] 
o-Radical (ESR); half-life ca. 10 min at 25°C in PhMe [16] 
GeGe "double" bond (pyramidal at Ge); [17] 
monomer at 100°C/0.1 Torr or in dilute PhMe solution 
o-Radical (ESR); half-life oo at 25°C in PhMe [16] 
SnSn "double" bond (pyramidal at Sn); [17] 
monomer at 100°C/0.1 Torr [19] or in dilute PhMe solution 
o'-Radical (ESR); half-life c~ at 25°C in PhMe [16] 
Sn(CHR2) 4 too bulky to be prepared [18] 
Structure not determined; m.p. 37°C; volatile [20] 
Very long P-P bond; readily dissociates to persistent [21] 
monomer (~'-radical) in PhMe or in gas phase 
(V-shaped; electron diffraction) 

a PMDETA = MeN(CH2CH 2 NMe 2)2, 
b DIOX = OCH2CH2OCH2CH 2. 

Table 2 
Crystalline homoleptic d- and f-block bis(trimethylsilyl)methyis M(CHR2) n and in some cases their adducts (R = SiMe 3) 

Complex State of Metal Comments Ref. 
aggregation coordination 

number 

Sc(CHR2) 3 1 3 
Y(CHR 2 )3 1 3 
Ti(CHR2) 3 1 3 
[ZI(CHR2)3CI] 1 4 
Hf(CHRz)3CI 
V(CHR2) 3 1 3 
[Cr(CHR 2)3 ] 1 3 
[Mn(CHR 2)2 ] 1 2 

[Mn(CHR z)2 (THF)] 1 3 
[Mn(CHR 2)2(DMPE) ] a 1 4 
CuCHzR 4 4 
[La(CHR 2)3 ] 1 3 + agostic 
[Sm(CHR2)3] 1 3 + agostic 
[Sm(CHR2)3(/x-Me)Li- 1 4 
(PMDETA)] b 
[U(CHR2)3] 1 3 

Structure not determined [22] 
Structure not determined [23] 
Structure not determined [23] 
Structure not determined; [23] 
M(CHR2) 4 too bulky to be accessible 
Structure not determined [23] 
CrC 3 : D3h [23] 
Electron diffraction (gas) at [24] 
~ 100°C/0.1 Torr; CMnC linear 

[{Cu( ~-CH 2 R)}]4 ;(CuC)4 planar 
Pyramidal at La 
Pyramidal at Sm 
Sm-C(H 3)-Li almost linear 

Pyramidal at U 

[25] 
[25] 
[26] 
[27] 
[27] 
[28] 

[29] 

a DMPE = Me2PCH2CH2PMe 2. 
b PMDETA = MeN(CH 2CH 2 NMe2)z. 
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C~,, N ~ CH 3 
/.Na" " \ , ~ H a  

143(6~---~/--1~2( 1~0 Si 

7+or a"  A0-2.. 

Fig. 1. A simplified bonding pattern showing key features of the 
X-ray molecular structure of [Na(/z-CHR2)~o (1) (R = SiMe 3) [6]. 

while each of [Ti(CH2R) 4 ] and Ge(CH2R) 4 is homolep- 
tic, they are an isoleptic pair, and [Ti(/x-CsH5) 2- 
(CH2R) 2 ] is a heteroleptic complex. 

Tables 1 and 2 provide a summary of the homoleptic 
bis(trimethylsilyl)methyls which have been structurally 
characterized of both Main Group and transition (and 
also f-block) metals, with brief notes on the metal 
coordination number and other features of structural 
interest. Included is a small number of such complexes 
bearing a coligand and selected compounds for which 
structural data are at present not available. 

2. Post-1990 studies of metal and metalloid bis(tri- 
methylsilyl) methyls 

The compounds considered in this section are (i) 
some alkali metal alkyls; (ii) a magnesium compound, 
(iii) a p-dioxane complex of the calcium compound, 
(iv) the phosphorus(II) alkyl and (v) the ytterbium(II) 
alkyls. 

The synthesis of some alkyls 1-5 of the alkali metals 
is shown in Scheme 1. The lithium compound, which 
has long been known, was readily prepared from 
R2CHC1 and Li (R = SiMe 3) and was then converted 
into a heavier Group 1 congener by treatment with an 
appropriate metal alkoxide or aryloxide, chosen so as to 
facilitate the separation of the lithium alkoxide or ary- 
loxide from the heavier Group 1 metal alkyl [6,7]. For 

M _,  S i M e  3 
e 3 ~ l ~  I 

~ N - -  ~ 14H Iq ---~ 

/ N  ~.Rb) I 104.7(4)* R b  ~ N \  

Fig. 2. A simplified bonding pattern showing key features of the 
X-ray molecular structure of [Rb( ~-CHRzXPMDETA)] 2 (2) [6]. 

compounds 1-3 or 5, the reactions were carried out in 
hexane, the lithium alkoxide or aryloxide being more 
soluble than 1 and 2 or the insoluble 3 or 5. The 
potassium alkyl 3 was readily converted into the 
PMDETA adduct 4; with that fact in mind, the rubidium 
complex 2 was prepared directly f r o m  Rb(OC6H2tBu: - 
2,6-Me-4), LiCHR 2 and PMDETA. Each of the com- 
pounds 1, 2 and 4 was crystalline and lipophilic. Their 
X-ray crystal structures have been determined, as illus- 
trated in Figs. 1, 2 and 3, respectively. The low coordi- 
nation number of two for Na in 1 is noteworthy, as are 
the low metal coordination numbers in 2 and 4. Like 
LiCHR a [5], the sodium alkyl 1 is volatile and may be a 
monomer or dimer in the vapour [6], the gaseous lithium 
compound being a monomer (gas electron diffraction) 
[5]. The dimeric structure of the crystalline Rb com- 
pound 2 has some similarity in its bis(alkyl) bridging 
and five-coordinate carbon with the archetypal 
electron-deficient compound [AIMe2(/z-Me)] 2. The 
presence in the potassium alkyl 4 [7] of both this type of 
bridging between the two internal potassium centres and 
of the single alkyl bridges between the outer metals (as 
in the Na compound 1 or its lithium analogue) is of 
interest. 

The syntheses of the bis(trimethylsilyl)methyls of 
Mg (6-9) [8] and Ca (10) [9] are illustrated in Scheme 
2. The coordination number of three for Mg in 7-9 is 

R2CHCI 

15ll Li / Et20 

N a O B u '  CsOC~CH(E-,tXCrD,C~ 
[Na(~t-CHR2) ] = = [Li(tt-CHR2)]. = 

1 [61 . [71 
Rb(OCeI.I2Butz.2,6_Me~)/~ [ 6 ] ~  u* 

[K(CHR2)] . 3 
P M D y  [61 IT]IPMDETA 

[Rb(I.t-CHR2)(PMDETA)] 2 

[Cs(CHR2)] . 
5 

(PMDETA) K( ~CHR=)K(t*-CHR2)=K(I.vCHR2)K(PM DETA ) 

4 

Scheme 1. PMDETA = MeN(CH 2CH 2 NMe2)2. 
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si 
~N o~ / Si Si \ /4H 

/~N - - ~  3.059(/4)/.~ )~,~d~._ / N ~  

~-.~N/;:~b - C// ~ / \ ~N" 7 

si . / \ 
Si Si 

Fig. 3. A simplified bonding pattern showing key features of the 
X-ray molecular structure of [K(PMDETA)(/x-CHR2)K(/x- 
CHR 2)2 K( p.-CHR 2)K(PMDETA)] (4) [7]. 

2.54(1) 
S" o ~  C 
~ l l ~ 1 0 6 (  l )° 

2.ttO) H / C ~ s i / l f 2 5 ( s  ) 

1.88(~ "~'-.,, C '~ .  172(3)0 

Fig. 4. A simplified bonding pattern showing key features of the 
low-temperature (15 K) neutron diffraction molecular structure of 
[Mg(CHR 2 X/~-CHR 2)k (9) [8]. 

unusual but has precedents. In crystalline [Mg(CHR2)- 
(/x-CHR2)L (9), Fig. 4, this is achieved by virtue of 
intermolecular C'H 3 . . .  Mg interaction involving one 
of the methyls of an SiMe 3 group with the Mg centre of 
a neighbouring molecule. The MgC2C' unit is coplanar, 
the Si '-C' . .  • Mg bond is almost linear and the Si '-C' 

133"7(2~k.,,z~ _C_ a / c ~ ,  9"4(1)0 

C,,~A~K]) ,,--,,t,~ 0 

Fig. 5. A simplified bonding pattern showing key features of the 
X-ray molecular structure of Ca(CHR2)2(DIOX)2(R = SiMe3, DIOX 
= 6CHeCH2OCH2CH 2) (1O) [9]. 

distance is significantly longer than the two remaining 
Si ' -C bonds. A possible description of the bonding in 
the Si '-C' • •. Mg moiety is that of a linear three-centre, 
two-electron bond. The crystalline Grignard reagent 6 is 
unusual in that with less bulky alkyl groups, a mononu- 
clear [Mg(alkyl)(Cl)(OEt2) 2 ] complex is the norm. 

The crystalline alkyl [Ca(CHR2)2(DIOX) 2 ] (10) 
proved to be particularly difficult to make [9]; unsuc- 
cessful attempts involved use of CaCIe/LiCHR 2 or 
finely divided calcium with R2CHBr. However, the 
metal vapour synthesis procedure using the latter 
reagents in THF and then replacing the THF by 1,4-di- 
oxane yielded crystalline 10. Four coordination for cal- 
cium is rare, and 10 is the first X-ray-characterized 
alkyl of calcium (Fig. 5). 

The unusual persistent, red phosphorus-centred radi- 
cal P(CHR2) 2 (11) was made by us in 1980, as a 
toluene solution, as outlined in Scheme 3. The removal 
of toluene yielded the white crystalline diphosphine 12, 
the X-ray structure of which showed it to be an ex- 
tremely strained molecule with a long P -P  bond [21]. 
When its solution in toluene was exposed to light, 

[M = Ca(0)l, I~CI-IBr [91 
M = [Ca(CHR2)2(THF) J 

~ MVS, THF, 77 K 

(IV[ = Mg), PhCHCI [Mg(CHR2)(P"CI)(OEt~)]= 

Et~O IS] 6 

l/2[Mg(OCeH2But2-2,6-Me-4)2]2 

DIOX 
= [Ca(CHR2)=(DIOX)2 ] 

I9l 
tO 

[Sl 
=-- Mg(CHR2),(OEt2) 

7 

1/2[(Mg(CHR2)=}(I.t-DIOX)]= 

8 

= [Mg(CHR2)(p.-CHR2)]. * 

9 

~ D I O X  

lSl 

[Sl 
2UCHR,: 

Scheme 2. 

2PCI(CHR2) = 
LM=2, ho - PhMe 

=- 21~(CHR=) 2 (R2CH)=P-PtCHR2) = 
PhMe + PhMe, hu 

II 12 

[21] [L M©= (~N(Me)CH2CI-I2NMe] 

Scheme 3. [21] L Me = CN(Me)CH2CH 2 NMe. 
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compound 11 was re-formed; the red vapour was exclu- 
sively the V-shaped monomeric r-radical 11. 

Homoleptic alkyls of the f-block elements are ex- 
ceedingly rare. For the greatly prevalent oxidation state 
of +3,  the sole representatives are the La(III) and 
Sm(III) bis(trimethylsilyl)methyls [Ln(CHR2)3] [27]. 
For the corresponding Ln(II) analogues, our efforts 
were centred on the f14, diamagnetic ytterbium(II) alkyls 
[30], in part because 171yb ( I =  1/2,  17% naturally 
abundant) NMR spectroscopy is a very powerful tool 
[31]. The alkyls [Yb(CHR2)(X)L m] ( X =  CHR 2 and 
L m = (OEt2) 2 (13) or DMPE (14) or X =  OAr and 
L m = (THF) 3 (15)) were prepared as shown in Scheme 
4 (Ar = C6H2tBu2-2,6-Me-4) and were analytically and 
spectroscopically characterized, the dialkyls showing a 
binomial triplet 171yb NMR spectral signal and the 
monoalk~l 15 a 1:1 doublet, the multiplicities being 
due to j(171yb-lH) = 3 0  Hz. The dialkyl 13 was 
further converted into derivatives, the ytterbium r a c -  

bis(1-azaallyl) 17 (see Fig. 10) and the bis(/3-diketini- 
mate) 18. Treatment of YbI 2 with 3NaCHR 2 yielded 
[Yb(CHR2)3Na] (16), which may be isostructural with 
[Yb(NR2)(/.~-NRz)2Na] [32]. Because we were unable 
to obtain any of the Yb(II) bis(trimethylsilyl)methyls 
13-16 in X-ray quality crystalline form, we investigated 

102:0(4) ° 
O~-48( 1 ) ./:O - . /  / C  

__Yb_ 780(4~Yb" 
C :  2.28(1)~O/2-37(1) ~ O  

Fig. 6. A simplified bonding pattern showing key features of the 
X-ray molecular structure of [{Yb(CR 3 X/x-OEt)(OEt 2)}2 ] (19) [30]. 

the reaction between YbI 2 and 2KCR 3 in dimethyl 
ether. Surprisingly, the product obtained was the alkyl- 
lytterbium(II) ethoxide 19 (Fig. 6) [30]. In an indepen- 
dent study, our Sussex colleagues showed that their 
X-ray-characterized [Yb(CR3)2] , obtained from YbI 2 -t- 
2KCR 3 in C6H6, reacted with diethyl ether to yield 19 
[33]. Such facile C-O cleavage is unexpected, because 
previously such reactions were considered to be a prop- 
erty of a strong Lewis acid, such as BCI 3 [34]. 

3. Transformation of an alkali metal bis(trimethyl- 
silyi)methyl into the corresponding metal 1-azaallyl, 
p-diketinimate and 1,3-diazaallyi 

Irrespective of the stoichiometry of mixing, the reac- 
tion between the lithium or potassium bis(trimethyl- 

[Yb(C H R2) (OAr)O'l-IF)s] 

I 15 

[Yb(OAr)2(THF)J [Yb(OAr)2(OEt2)] 

[{Yb(CRs) (tt.OEt) (OEtz)}2 ] [351 [35] J O~tKCHR2 

Yblz [Yb(CHR2),(OEt2)2I 13 

3 N a C ~ / J . .  I "~K'~  -'L') 2 B u * C ~ /  

[Yb(CHR=),Nal" 2K 'L') 1 --rao.[~'b(Li.')=l'/ 
16 v 17 / 

[Yb(L,L,)2 ] ~ 4PhCN / 

18 
Scheme 4. [30] Ar = C6Ht~ Bu2-2,6-Me-4. 

~ MPE 

[Yb(CHR2)=(DMPE)I 
14 

MCHR 2 
excess R'CN 

R'=Bu t 1361 

t R'=Ph ~ 

r~~MIIrH4.Me2[37C~ 

DsI 

1 : 1 complex (1-aza-allyl) 

1 : 2 complex(I].diketinimate ) 

1 : 3 complex (1,3-diaza-allyl) 

Scheme 5. 
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R N / ~ " ~  CH R R NR 

A (-- [LL']-) S ( -  [L'L']-) 

Ar Ar 
C C ~  

RN/"~N / "~CHR 

C (= [LL"]-, Ar = 2,5-Me2C6Ha) 

A 
PhG " / ' -~ , "  C Bu t 

..l(- 
D (-- [L"L'"]-) 

silyl)methyl MCHR 2 and excess of a nitrile R'CN free 
from c~-hydrogen gave a 1 : 1 (R' =tBu) [36], 1:2 (R' = 
Ph or 4-MeC6H 4) [37] or 1 : 3 (R' = 2,5-Me2C6H 3) [38] 
complex (Scheme 5). These were shown to be the alkali 
metal 1-azaallyl (A) [M~L-~L')], /3-diketinimate (B) (for 
R = Ph) [M~LT~E)] or 1,3-diaza-allyl (C) [M~-(-LL")], re- 
spectively. Although [Li'~L')] 2 did not react with 
tBuCN, with PhCN it afforded the unsymmetrical fl-di- 
ketinimate D of lithium [LinTeL")]2 (23) [36]. It is 
noteworthy that the ligands B and C are isomeric except 
for the nature of the aryl substituent. 

The formation and some reactions (see Section 4) of 
the 1-azaallyllithium compound [LJ{N(R)C(tBu)CHR}]2, 
i.e. [Li~-LL')] 2 (20), are shown in Scheme 6 (R = SiMe 3) 
[36]. Schemes 7 and 8 provide similar data on the 

inimatolithium compounds [Li{N(R)C(Ph)C(H)- 
C(Ph) R}]2, i.e. [ L i ~ ' ) ]  2 (21) [37] and the 1,3-di- 

azaallylpotassium com_mp_ound [K{N(R)C(Ar)NC(Ar)- 
CHR}(NCAr)] 2, i.e. [K(LU')(NCAr)] 2 (22) [38], respec- 
tively. 

The X-ray molecular structures of compounds 20, 21 
and 22 are illustrated schematically in Figs. 7, 8 and 9, 
respectively. Crystalline [LibeL')] 2 (20) has a central 
LiNLiN rhombus, Li -N-Li  73.0(4) and 74.2(4) °, N-  
Li-N 104.9(4) and 107.5(5) ° the coordination environ- 
ment for each Li atom is completed by the ~3-1-azaallyl 
ligand and an agosticoLi • • • CH3(SiMe2CH-) contact; 
the Li atom is 1.44 A out of the NCC azaallyl plane 
[36]. Crystalline [ L i ~ ' ) ]  2 (21) has a fused tricyclic 
binuclear skeleton with a central LiNLiN rhombus; the 
small differences in each pair of the Li-N and N-C 
bond lengths within the [U U]- ligand B (those to the 
four-coordinate nitrogen being the slightly longer), and 
the virtual identity of the two CH = CPh bonds, sug- 

i v 

rac- [Zr{N(R)C(But)CHR}2CI2] 

24 91% ~ r C |  4 

2LiCHR 2 
2ButCN 

2 RCH2C(But)=NR 

27 > 90% 

Bu t 

N ~ ,"  / ~, ~N 

H ~ C /  
Bu t 

20 99 % 

2KOBu t 

i i 

2/n IK{N(R)C(But)CHR}I. 

25 97% 

f 1 

2[M {N(R)C(But)C(H)C(Ph)NR}CI3] 
28 (M = Zr), 94 %~ 
29 (M=H£) ,  61% ~2MC14 

F Ph R ] 

2PhCN / H c / ~ N \ L i l  

/ 
L Bu t R _12 

23 81% 

~ ( ) a )  CI-I~r 2 
LiBu n 

F BU n BU t -I 

L H Li -J 

26 27 % 

Scheme 6. [36]. 
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IH Ar__ H Ar.~ R 

X.coso, coc4/3" I /c--  N. / 
I'laO " ' ~ ]  t ~ ) / /  1/2H2 H c-tc 

F Ar R ] l/2CI'IzB~ r" / % C - -  N / / 

2..ArCN M(CI-~) I/2[HC//~'---"-N"~"I" - -  "'I ~ L Ph R J,2 

k Ar R d 2 "'-~I'laO Ar R "l 
2SnCIM%/ rT,: ez~ ~ ' ~  /C~N. ! (-SnMeet)y4) 21 M = Li, Ar = Ph (76 ~) 

^, / 33 M=K, Ar=Ph(87%) HC. HI 
o r ~ n ~ w y  M=Li Ar=C6H4Me'4 (52%) X~C- -N /  / 

Ar R J 
Ph R Ph H 

<_~N/ ' ,~sn/Mc I-I20 l / ~ - - - ~  % /Me 35 Ar=Ph(97%) 
H I "- HC ~ Sn-- Cl At = C6H4Me-4 (96 %) 

C N (trace) \ ~ - ~ N /  \ 
Ph R Me Ph H Me 

36 (45 %) 37 (76 %) 

Scheme 7. [37,44]. 

gests that the NCCCN fragment is substantially delocal- 
ized [37]. 

Crystalline [K'-~L")(NCAr)] 2 (22) has each K coordi- 
nated to five nitrogens which form a square pyramid 
around the metal, with the two K-N(R) and K-N(CAr) 
bond lengths of the 1,3-diazaallyl moiety essentially 
identical and each of the N = C - N - C = C  fragments 
coplanar [38]. 

Each of the ligands A - C  is sterically demanding. 
The /3-diketinimato ligand B in [Li'~L~L')]2 (21) evi- 

dently has some @-character and among mono-anionic 
ligands is sterically comparable or even more (see Sec- 
tion 5) demanding than a highly substituted cyclopenta- 
dienyl or tris(pyrazolyl)borato ligand. 

The proposed reaction pathway for the formation of 
these types of complexes from an alkali metal bis(tri- 
methylsilyl)methyl MCHR 2 and a nitrile R'CN free 
from a-hydrrp_gen (see Scheme 5), i.e. the 1-azaallyl 
such as [Li(LL')] e (20), the /3-diketinimate such as 
[Li~7-~L')]2 (21) and the 1,3-diazaallyl such as 

i. LiCHR 2 
2 (2,5-Me2CBH3CN) =- 1 I n  

ii. KOBu t 

I Ar Ar ' 
C H 

1/2 .. (ArCN)K ~ (NCAr) 

e 

ArCN 70% 

22 (93 %) 

Scheme 8. [38]. 
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I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  H . . . . . . . . . .  / 

, '  Ph , '  
/ / 

z . . . . . . . . . . . . . . . . . . . . . . .  -RN- . . . . . . .  NR . . . . . .  ' 
1o5o(4)" / ".t,,~5(9)/ 

• , / ~ U'~ 1.952(1o) 
ca .  0.83 / i / ' ~ ' )  / 

"/~. ~ " ~  75.0(4)*/2.095(2) 

, -  . . . . . . . . . .  RN -/~- _ - } _  _ ' ~ , ~  . . . . . . . . .  , . . . . . .  
/ / 1.299(6)/ 111.0(4) ° ~,,/1 .:337(6) 45o / ,/ 

, / /  5 3 . ~ ~ / /  ,/ '  
L_ __, .  . . . . . . . . . . . . . . .  -n- . . . . . . . . .  -,~.,<.=~ T/ . . . . .  , 

Fig. 7. A simplified bonding pattern showing key features of the X-ray molecular structure of [ ~ ) ] 2  (21) (L'L' = N(R)C(Ph)C- 
(H)C(Ph)NR, R = SiMe 3) [37]. 

[K'-(-L-]g')(NCAr)] 2 (22), is shown in Scheme 9 [38]; for 
sake of simplicity, M is shown as Li. The initial step is 
an unexceptional attack of CHR 2 on R'C--~q to yield I. 
For R' = 2,5-Me2C6H3, the N-centered nucleophile I or 
its r~rrangement product II  then attacks a second 
R'C------N molecule to give I I I  or IV, respectively, each 
undergoing a further isomerization to give the final 
product V, Li[C]. For R' = t Bu, the reaction stops at II, 
i.e. Li[A], the latter proving unreactive with further 
tBuCN (although it does react with PhCN to give 
Li[D]). Finally, when R' = Ph or 4-MeC6H4, l-I, behav- 
ing as a C-centred nucleophile, attacks R'C--N to yield 
VI, which rearranges to the final product VII, i.e. Li[B]. 
The differences between the two cyanoarene systems 
leading to V or VII may lie in the relative rates of the 
isomerisation ( I -~  II) and insertion ( I -~  III) steps, the 

1.402(7) CMe= 1.36(1) 

R ~ _..N,-,~ / H ca. 1.44 / , . ~  ~.-..... . 
, 2.04(1~ N : .  ~ C - -  S,Me 2 

M , c ~ L i ' , ' ~  '.97(i') I~- '~__C/H3 
'-"C ... CH3 1 I  \ \ 

J ' ~ ' N R  2.~(~ 1 ) ~  2.48(1 ) 
He ~ Si Me 2 2.43(1) 

Fig. 8. A simplified bonding~p~ern showing key features of the 
X-ray molecular structure of [Li(LL')] 2 (20) (LL' = N(R)C(tBu)CHR, 
R = SiMe 3) [36]. 

latter being favoured for the more hindered system. 
Anionic 1,3-SiMe 3 rearrangements are well known [39], 
although examples of such migrations from carbon to 
nitrogen are rare. 

Li[CH(SIMe3) 2] + R'CN 

R ~ 

N ' C %  ~lLi + 
II 

R ' C  CH(SiMe3)2 

a I 

I Li* 
R'C V 

% CH $iMe 3 

a '  

C<.._ 
(Me3Si)2C~ " ~  N Li ÷ 

R'CN 

!I1 R' 
/ C ~ -  .÷ 

Me3Si N NL= 

R'C 
% CHSiMe 3 

IV 

R J 

Me3SiCHr- " NSiMe 3 

Li+ 
I I  

1 
R' 

/ C %  
Me3Si~H NSiMe3 

Vl 

R' 
/ C %  

CH NSiMe 3 
H 

R ' C ~ L i *  
Me3S i V I I  

Scheme 9. [38]. 
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Ar 
C ~  .. K(NCAr) cAr._ 

(~CN) K ~ / 
12ol " " ~ /  / N R  . K,,  

_ _ _ _ _ _  ( ) °  1.38(2) / N - ~ . ~  ~ /  , "  / , 

~ 3 ~ 2 T - ~ c :  . . - . , . -  . . . .  ~ \  . - / ' .  117(1)0 / -  3.16(2) , \ 

/ 
/ I 

Fig. 9. A simplified bonding pattern showing key features of the X-ray molecular structure of [K{N(R)C(Ar)NC(Ar)CHR}(NCAr)] 2 (22) 
(At = C6H3Me:2,5 , R = SiMe 3) [38]. 

4. Synthesis, structures and reactions of various 1- 
azaallylmetal complexes 

The synthesis and selected reactions of [Li~L-~L')]2 
(20) are outlined in Scheme 6 [36]. 

The conversion of 20 by PhCN into the unsymmetri- 
cal lithium /3-diketinimate [Li~-L~L '')]2 (23) has already 

been noted. This reaction, and also those of 20 with (i) 
an equimolar portion of ZrCI4, (ii) KOtBu  and (iii) 
successively CH2Br 2 and Li"Bu, yielding 24, 25 and 
26, respectively, demonstrate that these nucleophilic 
substitutions involve both the C- and N-centres of the 
1-azaallyl ligand. By contrast, the hydrolysis of 20 
giving the imine 27 shows 20 behaving as a C-centred 

LiBu ~ 
PhCH2R "-~ Li{CH(R)Ph}(TMEDA) 

TMEDA 

ButCN 

x u t  

Cl 3 N R  

31 

Scheme 10. [41]. 

Z r C l 4 J  

ref. [42] 

2ButCN 

Bu t 

BU t 

32 

Scheme 11. [43]. 

BU t 

?"-S~N R 

[u('rMEDA)]2 

~ .  : ~c y 
~ ' ~  Bu t 
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nucleophile. The /3-diketinimatolithium compound 23 
was readily converted into [M"(-~")CI3] (M = Zr (28) 
or Hf (29)). 

The diastereoselective formation of rac-[Zr{N(R)C- 
~ C H R } 2 C I  2] (24) rather than a mixture of rac- and 
meso-isomers mirrors that for rac-[Yb~(-LL') 2 ] (17), 
formed not only from [Yb(CHR2)z(OEt)2] z (13) and 
2tBuCN but also from 20 + YbI 2 (Scheme 4) [30]. The 
isomerism arises because C-3 of the 1-azaallyl group is 
chiral, being attached to the metal, H, SiMe 3 and C. 

The outcome of the reactions leading to the 1-azaal- 
lyllithium co q~olex [Li{N(R)C(tBu)C(H)CH(R)nBu}]2 
(26) from [Li(LL')] 2 (20) was unexpected. The purpose 
of adding CH2Br 2 to 20 was to generate a methylene- 
bridged bisazaallyl precursor. In the event, a crystalline 
product was not isolated and hence 2LinBu was added 
to an in situ mixture of CH2Br 2 + 20. The product was 
the higher homologue 26 rather than the isomer 
Li{N(R)C(tBu)C(R)CH2tBu}. This apparent 1,2-H-R 
(R = SiMe 3) exchange represents an unusual dyotropic 
shift. 

The rac-dichloride 24 and an equimolar portion of 
ZrCI4 yielded the binuclear zirconium(IV) chloride 
[{z~-LL')CI2(/£-C1)} 2 ] (30) (Eq. (1)) [40]. The dimeric 
nature of this crystalline Zr(IV) trichloride complex 30, 
contrasting with the monomeric 28, shows that the 
1-azaallyl ligand A is not as sterically demanding as the 
fl-diketinimate B. 

Two other 1-azaallyl ligands E and F, have been 
investigated. Each was generated by a modification of 
the LiCHR 2 + tBuCN reaction (see Scheme 5), as shown 
in Schemes 10 [41] and 11 [43], respectively, for the 
synthesis of [Zr{N(R)C(tBu)CHPh}C13]• (31) [41] and 
[Zr({N(R)C(IBu)CH}2C6H4-2)CI2] (32) [42,43]. 

Bu t 
C 

R N / : ~ " ~  CHPh 

Bu t 

.c/:-_%. 

Bu t 

E (m ILL'"]-) F 

The X-ray molecular structures of rac-[Y~b(-LL')2] 
(17) [30], rac-[Z'--~L')2C12 ] (24) [36,40], [{Z~-L')CI 2- 
(/z-C1)}2 ] (30)  [40], [Zr{N(R)C( tBu)CHPh}C13]  (31) [41] 

and [Zr({N(R)C(tBu)CH}2C6 H4-2)C12 ] (32) [43] are il- 
lustrated schematically in Figs. 10, 11, 12, 13 and 14, 
respectively. 

Crystalline rac-[Yb'-b~L') 2] (17) is mononuclear, the 
ytterbium atom being bound in an r/3-fashion to the two 

2.78(2) R 
/N  

Bard ~ ~3(1)j~cBut 

Me2SI-----,-CH s HsC-----StMe 2 

Fig. 10. A simplified bonding pattern show w_~ key features of the 
X-ray molecular structure of rac-[Yb(LL') 2] (17) (LL' = 
N(R)C(tBu)CHR, R = SiMe 3) [30]. 

Bu t 

2.554oC~N R CR 

" "\'i"l:.".', X I / "  -2.225(12) 2.401(5)2 / 
C l ~ - Z r  2-~.~_~5( 4 ) 

- c ,  

But"N R 

170.1(5)* 

C,.--~, k 

Fig. 11. A simplified bonding pattern showing key features of the 
X-ray molecular structure of rac-[Z~-~L')2C12] (24) (LL' = 
N(R)C(tBu)CHR, R = SiMe 3) [40]. 

S 1 "8( IJL .~2"393(22.1 ~5(.4~....~1, ~ 

/ct>~ . . . / : 1  
Z ~ l ( ~  Z r ~ , , ,  But 

Fig. 12. A simplified bonding pattern showing key features of the 
X-ray molecular structure of [{z~L-'L')CI2(/z-C1)}2] (30) (LL' = 
N(R)C(tBu)CHR, R = SiMe 3) [40]. 

Cl 94.21(4)° F I 
~ f - ~ /  . .t,296(4)* 

2'494(3)". X~/Z~ ~x-~, 2.598(3) 

.z&8(3) ~ ~_. 

Fig. 13. A simplified bonding pattern showing key features of the 
X-ray molecular structure of [Zr{N(R)C(tBu)CHPh}Cl3] (31) (R = 
SiMe 3) [41]. 
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2.561(4) 

2.632(3) Bu t 2.470(3) 

, -"NR \~/zmo) 
Zr------CI 
~ 2.,~30) 

Bu t 

BU t 

1 
4) ° 

BUt 

Fig. 14. A simplified bonding pattern showing key features of the 
X-ray molecular structure of [Zr({N(R)C(tBu)CH)C6H4-2})C12] (32) 
(R = SiMe 3) [43]. 

1-aza-allyl ligands A with an additional close agostic 
contact between Yb and one of the methyls of the 
SiMe 3 group (Fig. 10) [30]. In benzene solution, NMR 
spectra show the presence of two species, possibly the 
rac- and meso-diastereoisomers, C-3 of A being a chiral 
centre. 

Crystalline rac-[Z'-~L')2Cl 2 ] (24) has the zirconium 
in a distorted tetrahedral environment, taking the 7} 3- 
azaallyl ligand A as occupying a single coordination site 
(Fi_~ll) .  A similar situation is found for [Zr({N(R)C- 
(tBu)CH}2C6H4-2)CI2] (32), in which the two 1-azaal- 
lyl fragments are within the single bidentate ligand F 
(Fig. 14) [43]. 

The two crystalline 1-azaallylzirconium(IV) trichlo- 
rides [{Z'-~-"L')C12(/x-CI)} 2] (30) [40] (Fig. 12) and 
[Zr(E)CI3] (31) [41] (Fig. 13) are interesting in that the 
former is binuclear whereas the latter is a mono- 
mer. Evidently, the r/3-[N(R)C(tBu)CHPh] - ligand E 
(=  [LE"]-) is sterically more demanding than [LL']- 
A. 

5. Synthesis, structures and reactions of  various fl. 
diketinimatometal complexes 

The synthesis of I L i a ' ) ]  2 (21) and the potassium 
analogue [K'-(LT-'L')], (33) and a selection of their reac- 

tions are outlined in Scheme 7 [UL' = N(R)C(Ph)C- 
(H)C(Ph)NR, R = SiMe3] [37,44]. The conversion of 
[Li{N(R)C(tBu)C(H)C(Ph)NR}]2 (23), i.e. [Li~7"U")]2, 
into [ M ~ " ) C I  3 ] (M = Zr (28) or Hf (29)) has already 
been noted, as shown in Scheme 6 [36]. The reactions of 
21 or 33 with CH2Br2, H20, (CH2Br)2, SnCI2Me2, 
SnC1Me3, or CoCI 2 (Scheme 7) yielding 34, 35, 35, 36, 
36 or 38 demonstrate that the alkali metal /3-diketini- 
mates 21 and 33 may behave either as C- ( ---, 34 or 35) 
or N- ( ~  36 or 38) centred nucleophiles; in this they 
resemble the /3-diketonates. 

It is interesting that [ K ~ ' ) ] ,  (33) and (CH2Br) 2 
gave exclusively the elimination product L' L' H 35 rather 
than also CH2(L'U) 2. The [L'U]- ligand (B) transfer 
reactions to a Co(II) [44] or Sn(IV) [37] centre yielding 
38 or 36, respectively, are unexpectional except in one 
particular. The formation of 36 from SnC1Me 3 at first 
sight might be taken as indicating that Me- was pre- 
ferred over C1- as the leaving group; however, for each 
molecule of 21, equimolar portions of 36 and SnMe 4 
were formed; thus in this reaction SnMe3(L'L') was 
probably an intermediate which with SnCIMe 3 gave 
36 + SnMe 4 [37]. 

The formation of the N,N'-bis(desilylated)tin(IV) [37] 
or -cobalt(II) [44] complexes 37 and 39, respectively, by 
controlled hydrolysis of their precursor complexes 36 
and 38, respectively, shows that the SiMe 3 substituents 
may play an additional useful role, as p r o t ~  groups, 
• . ~ " t ¢ m the~_.~_quence: 4PhCN + 2LiCHR 2 [Li(L'E)]~(21) 
- .  Sn<L'L'm M  tCoff  L221 Sn<m 
(CI)Me 2 (37) or [Co(LL) 2 ] (39) [E E = B, LL = N(H)- 
C(Ph)C(H)C(Ph)NH G]. 

c (- [EL]-) 

rao-[Zr(LL')=Cl=] 
2.4 

+ ZrCI 4 
PhMc 

14Ol 
[{~'r(LL')cl,(wcou 

30 
(I) 

Ph 

H 

B 

P h C  j/(~Ph 

C 
(2) 
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2.449(2) 
CI 

2.394(2)~ h CI 

,--?h io..,.,, : 
i I ¢ 0  ~ 6 ~  / \  _7 
_-"___ phC2~61 (~---) ~/~138(~ 

Fig. 15. A simplified bonding pattern showing key features of 
the X-ray molecular structure of [ Z ~ " ) C I  3] (28) (U'L"= 
N-(R)C(tBu)C(H)C(Ph)NR; R = SiMe 3) [36,45]. 

The X._X__zLa_y molecular structures of [Z~-TL")CI3] (28) 
[45], Sn(L'L')(CI)Me 2 (36) [37], Sn(LL)(C1)Me 2 (37) 
[37], [ C o ~ ' )  2] (38) [44] and I C o n )  2 ] (39) [44] are 
illustrated schematically in Figs. 15, 16(a), 16(b), 17(a) 
and 17(b), respectively (12'12" = N(R)C(tBu)C(H)C(Ph) - 
NR, R = SiMe3). 

It is interesting that [Z~-7~L")C13] (28) should be a 
monomer (Fig. 15) [36,45]. It is most unusual to find 
that a zirconium(IV) trichloride is mononuclear. For 
example, [{Zr(r/-CsHs)C12(/x-C1)},] [46] is polymeric in 
the crystal and even the pentamethyl analogue is a 
dimer, [{Zr(r/-C 5 Mes)C12(/x-C1)} 2 ] [47]. This shows that 
the fl-diketinimato ligand [12' 12" ]- D, like [12 12 ]- B, is 
exceptionally sterically demanding. 
___Q),stalline S n ~ ' ) ( C I ) M e  2 (36) (Fig. 16(a)) and 
Sn(LL)(CI)Me 2 (37) (Fig. 16(b)) have tin in a distorted 
trigonal bipyramidal environment, with the chloride and 
N(2)' axial (numbers in parentheses refer to 37): CI- 
Sn-N(2) 166.4(2) (163.2(1)), C - S n - C  119.9(4) 
(122.7(1)), C-Sn-N(1) 111.1(4) and 129.0(4) (112.4(1) 
and 124.8(1)), C-Sn-N(2) 97.8(4) and 92.5(3) (97.5(1) 
and 94.1(1)), CI-Sn-C 92.2(3) and 91.0(3) (92.7(1) and 
91.7(1)], C1-Sn-N(1) 85.4(2) [81.6(1)), N(1)-Sn-N(2) 

(a) 2.90(1) Cl 
~j __SnMe 2 

3 0 2 ( D 3 " 1 8 ( ~ I  ca 1.37A 
1.423(13) ~ h" ".1"~~,//~,, '31115) 

, -  - ~ - ~ r - 7 ~ N ( ~ / -  _ ~ - ,  

, \ _ /  ,',_-7""'" .j 
. . . . .  . . . .  

(b) 2.181(3) 
1.409(4) Ph 1.310(4)H / Me 

Fig. 16. Simplified bonding patterns showing key features of the 
X-ray molecular structures of (a) Sn~)(C1)Me 2 (36) (L'L' = N- 
(R)C(Ph)C(H)C(Ph)NR, R =SiMe 3) [37] and (b) Sn~)(Cl)Me 2 
(37) (EL = N(H)C(Ph)C(H)C(Ph)NH, R = SiMe 3) [37]. 

R t.314(9) 
( 0 ) 2.007(6) N 

pt~ R nT.4Or / 
_~/~.2: ._~ N j,.  r ' ~ /  ,,~ 103.0(2)o 

- -  ,~  , . . . .  . , . ,  \ ~ - . ~  

102.7(2)o I~ 
R 1,31o¢ 

Ph 
/ 

~ .405(12) 

/ 1.419(11) 

\ 
Ph 

(b) 
P 

H H 1.333(4) P / h  
1 ~  N. ~t.387(5) 

-- ~ C o  )89.9(1)0 ~ x  

P ~ H 1.326(4) -x,x,x h 

Fig. 17. Simplified bonding patterns,showing key features of the 
X-ray molecular structures of [ C o ~  )2] (38) (L'L' = N(R)C(Ph)C- 
(H)C(Ph)NR, R=SiMe 3) [44], and (b) ICon) 2] (39) (LL= 
N(H)C(Ph)C(H)C(Ph)NH, R = SiMe 3) [44]. 

81.0(3) (82.1(1)) ° [37]. Compounds 36 and 37 differ in 
one important respect: the SnNC-C-CN skeleton in 37 
is almost planar whereas the Sn atom in 36 is ca. 1.37 ~, 
out of the NC-CN plane; the central C of 1212 in 36 is 
0.09 ~, out of the NC-NC plane. The [1212]- B ar- 
rangement around Sn in 36 is closely similar to that of 
[12'12" ]- D around Zr in 28. 

The difference in relationship between the metal and 
either the [1212 ]- or the [LL]- ligand for the tin com- 
plexes 36 and 37 clearly has a steric origin, which is 
even more obviously manifested by comparin_g the 
structures of [Co"-~L')2 ] (38) (Fig. 17(a)) and [Co(LL) 2 ] 
(39) (Fig. 17(b)). Both of these d 7 crystalline complexes 
are mononuclear, but whereas the former has a tetrahe- 
dral arrangement around the cobalt, the latter is square 
planar. 

6. Synthesis  and structure o f  a 1 ,3-diazaal ly luranium 
complex  

Treatment of UC14 with two equivalents of [L~-N- 
(R)C(Ph)C(H)C(Ph)NR}] 2, i.e. [Li'q~L')] 2 (21), yielded 
a pink product 40 composed of one [U(VI)] dication 
[{UCI(p.-C1)(L'L')(NR)}z] 2+ and two [U(III)] anions 
[UCI2(L'L')(LL")]-. The ligands [L'12]- B and 
ILL"]- C (Ar = Ph) [EL" = N(R)C(Ph)NC(H)C(Ph)- 
CHR, R = SiMe 3] are isomeric. 

The organic coproduct was not isolated; if it is a 
single entity it should have the composition IN(R)] 2- 
(CPh)4(CH)2; a possible structure is shown in VIII 
(Scheme 12). 
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4UCI 4 
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4[Li{N(R) C(Ph)}2CH] 2 
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Ph H 
VIII  not isolated 

o, ] 
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Scheme 12. [38]. 
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I I I 

2.86(2) , l 
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Fig. 18. Simplified bonding patterns showing key features of the X-ray molecular structure of [{UCI(/~-CI)(U U)(NR)} 2 ][UCI 2(U U )(LL" )]2 (40) 
(L' L' = N(R)C(Ph)C(H)C(Ph)NR, LL" = N(R)C(Ph)NC(Ph)CHR, R = SiMe 3) [38]. 
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The presence of the two U=N double bonds in the 
cation implies that a C-N bond in the [L'U]- B /3-di- 
ketinimato ligand must have been cleaved along the 
reaction pathway, in a reductive process. 

The X-ray molecular structure of the salt 40 is shown 
schematically in Fig. 18(a-h) [38]. 

For both the cation (Fig. 18(a)) and anion (Fig. 
18(b)), the central uranium is in a distorted octahedral 
site. The salt 40 has four different types of U-N bonds: 
U=N, U-N in [UU]-  and [LU']-, illustrated in Fi~. 
18(c-f). The U=N bond distance (Fig. 18(c)) of 2.04 A 
is the second shortest known for UN; this and the 
U=N-Si  bond angle of 156(1) ° suggest that there is UN 
triple-bond character. The delocalized five-membered 
fl-diketinimato ligand (Fig. 18(e) and (f)) provides a 
stronger UN bond than the delocalized three-membered 
1,3-diazaallyl ligand (Fig. 18(d)). The U atom in both 
the cation (Fig. 18(g)) and anion (Fig. 18(h)) is situated 
above the plane of the N = C - C = C - N  fragment of 
[UU]-,  the central C atom being slightly out of plane 
(cf. the Sn(IV) and Co(II) complexes 36 and 38). 

The isomeric 75- and r/3-1igands in the anion (Fig. 
18(f)) and cation (Fig. 18(d)) may be related by the 
molecular rearrangement shown in Eq. (2); its occur- 
rence may be sterically induced [38]. 

7. 1-Azaallyl and fl-diketinimatozirconium(IV) chlo- 
rides as olefin polymerization catalysts 

There is considerable current interest in the use of 
various Group 4 metal(IV) chlorides as polymerization 
catalysts [48], particularly those of zirconium. The ma- 
jority of useful catalysts have been based on the zir- 
conocene(IV) chlorides, of which the simplest is [Zr(7/- 
Cs H s)2C12 ], but ansa-bridged bis(cyclopentadienyl)s, 
especially those of C z symmetry, have been particularly 
important. Such a compound is used either with an 
excess of methylaluminoxane (MAO), or is converted 
into an appropriate alkylzirconium(IV) salt, as a single- 
site catalyst for the polymerization or oligomerization of 
ethylene, propylene or another a-olefin, or for the 
copolymerization of two olefins. 

We have examined some of the zirconium(IV) chlo- 
rides described in Sections 4 and 5 as catalysts, with 
MAO as cocatalyst, for the polymerization of ethylene 
and propylene. Compounds [Zr{N(R)C(tBu)C(H)C(Ph) - 
~qR}C13] (28)[451, [Zr{N(R)C(tBu)CHPh}C13] (31) [41] 
and [Zr({N(R)C(tBu)CH}EC6H4-2)C12] (32) [43] showed 
significant activity for the polymerization of C 2 H  4 in 
toluene under slight C E H  4 pressure (6-10 bar) (28 and 
32) or ambient conditions (31); 31 was also effective 
under ambient conditions for producing highly 
monodisperse atactic polypropylene. 
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